
InnoEX Ethernet-CANbus
UserGuide

Abstract

• Ethernet-CANbus provides a IP-base link to bridge CAN bus
connection between the local host PC and a remote CAN device.
• On Windows, it requires driver, connection-process(UI/App). To access the

CAN device, we provide a test tool and a command line tool. There are source
code and SDK of the command line tool so that user can build their own
application on windows.

• On Linux, it requires kernel driver, connection-process(command line) and
can-utils. Once setup connection, user can access the target CAN device
through can-utils.

• The document will guide two platforms OS (Windows and Linux-
Ubuntu) for how to setup, how to connect to Ethernet-CANbus device
and how to configure the Canbus tools.

Install on Windows

• Click “Ethernet-CANbus_1.0.0.0.exe” to install APP

• Click “Next”

• Click “Install” to start installing

• When it finishes, it will ask to reboot PC for CANbus driver initialization

• If you click “Yes” it will reboot immediately

Windows - Use App

• Click “Ethernet-CANbus” at Desktop

• It will shows the form and connect device automatically

(Default device IP-address is 192.168.2.10)

• When it connect successfully, it will show status as this

• Click “Stop” button, it will disconnect device

• If click “-” button, the form will hide, click the Notification Icon to
show the form

Windows - Check CANbus device

• If device connected, you can open “Device Manager” to check CANbus device
Com-port

Windows – CANbus tool

• We provide GUI CANbus tool to verify the module.

• Before testing, please set BaudRate, and then click "Connect" to start CANbus.

• After successfully starting CAN, the button will change from "Connect" to
"Disconnect".

• Using the CANbus tool, you can monitor whether CAN frames are received and
sent from the CAN bus network.

Windows – CANbus SDK

• We provide CANbus SDK for programming development

• You can read these two guides for more detail.

Install on Linux

• Prepare the kernel tree & compiler tools for your distribution:

• sudo su

• apt-get update

• apt-get install build-essential fakeroot gcc kernel-package libncurses5-dev

(if your target system is Debian/Ubuntu based)

Build Kernel Module and Copy

• Cd to ./mlvc_v6.1.0.8-0.1.2 and do “make” to build mlvc.ko

• And then copy mlvc.ko to previous path

Use mlvcctrl

• Enter command with -h or help to print the command usage

• Make sure to check using root permission (it will ask sudo permission
and passwords automatically)

Setup

• Use “mlvcctrl setup” to install mlvc-pkg

Mlvcctrld service

• Use “sudo systemctl status mlvcctrld.service ” to check active

• After “setup” command, it will enable this service(need reboot or set start to active).

Server add

• Use “mlvcctrl server_add <Host_IP> ” to add target host and check
the host by show_list

Show Server List

• Check the host server numbers and check devices by –d

Server all connect

• Use “mlvcctrl server_all_connect <Host IP> ” to connect host all
devices

• Make sure to check status “conn” after doing connect command

Server all disconnect

• Use “mlvcctrl server_disconnect <Host IP> “ to disconnect all devices
from the host

Server remove

• Use “mlvcctrl server_remove <Host_IP>” to remove the target host
and check using by show_list

Operation Flow
1. Set mlvcctrld.service is Active => After setup, it will need reboot OS or

set start up mlvcctrld.service

2. server_add <Host IP> => Add server Host IP at server list

3. show_list -d => Check Device ID from the list

4. Server_all_connect <Host IP> => Connect server all devices

5. Server_all_disconnect <Host IP> => Disconnect server all devices

6. server_remove <Host IP> => Remove server by Host IP

Note :
1. remove all servers before OS shutdown and suspend

Linux - Building Driver

• Cd to ./driver_v1.14/ Dir and start to build kernel object : f81604.ko

• Follow Steps :

1. make clean && make

2. sudo make install

3. reboot

Linux - Check the mlvc and canbus interface

• Check the “./mlvcctrl show_list –d” to check the connection

• If not in connection, please refer to the mlvc user guide for operation

• Use “ls /sys/class/net/ -al” command to check CANBUS device is available (can0/can1/… etc.)

Linux - Configure Canbus and startup
• The following examples will configure “can0” to bit-rate 250000, sample-point 0.875 and error

restart with 100ms.
1. sudo su
2. ifconfig can0 down
3. ip link set can0 type can restart-ms 100
4. ip link set can0 type can bitrate 250000 sample-point 0.875

This value should be fine-tune by customer or following table, and the clock should set with half clock source

(16MHz / 2 = 8Mhz)

5. ip link set can0 type can berr-reporting on
6. ifconfig can0 txqueuelen 1000
7. tc qdisc add dev can0 root handle 1: pfifo
8. ifconfig can0 up

• After config two canbus interfaces, you can use “ifconfig” for checking

• We also attach a script to bring up canbus, and you can edit and execute it by
yourself.

• Command : sudo sh ./canbus_up.sh can0

Linux - Using can-utils to operate Canbus

• We can get can-utils with following command
Debian/Ubuntu :

apt-get install can-utils

Frdora/Centos/RHEL :

yum install can-utils

Source code download link :

https://github.com/linux-can/can-utils

• We’ll use “candump” to receive data, “cangen” & “cansend” to send data. The “cangen” will send
random data & ID and “cansend” will send specific data & ID to canbus.

https://github.com/linux-can/can-utils

Cangen and cansend example

Candump log

© 2023 MILLITONIC - Confidential & Proprietary

